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ABSTRACT 

We introduce the “sample” technique to generate robust critical values for the Jarque and Bera (JB) 

Lagrangian Multiplier (LM) test for normality, JBCV(
1 2,k k ), by using improved critical values the 

true size of the test approaches its nominal value. Monte Carlo methods are used to study the size, and 

the power of the JB normality test with the “sample” critical values and compare with three 

alternatives to the Jarque and Bera LM test for normality: the Urzúa (1996) modification of the Jarque-

Bera test, JBM; the Omnibus K
2
 statistic made by D’Agostino, Belanger and D’Agostino (1990), 

JBK; and finally the, Jarque and Bera LM test for normality by using the quantities 
1k  and 

2k
 
are the 

definitions of sample skewness and kurtosis JB(
1 2,k k ). The JBCV(

1 2,k k ), shows superiority as it has 

the right size for all samples, small, medium and large, and at the same time has the higher power. 

 

Keywords: Jarque and Bera LM test; Kurtosis; Omnibus K
2
; Skewness; Test for normality. 
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1. INTRODUCTION 

 

In univariate data analysis, one of the most widely used assumptions is the assumption of “normality”. 

Furthermore, the commonly assumed “mormality”, helps us to estimate and make inferential 

comparisons and judgments. 

However, violation of this assumption might produce misleading inferences and the result of using 

unreliable inferences is to produce misleading interpretations. 

Testing for normality should be at least as important a step, or perhaps more, than the assumption for 

normality. 

The most widely method, at least in econometrics, that has been suggested and used for testing 

whether the distribution underlying a sample is normal is the Bowman and Shenton (1975) statistic: 
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which subsequently was derived by Bera and Jarque as the Lagrangian Multiplier (LM) test against the 

Pearson family distributions. For that reason, the JB test is also referred to as the Jarque-Bera test 

(Bowman and Shenton, 1975; Shenton and Bowman, 1977; Bera and Jarque, 1982; Jarque and Bera, 

1987).  

 The JB statistic has an asymptotic chi-square distribution with two degrees of freedom.  

Mantalos (2010) in a Monte Carlo study showed by using three different definitions (estimates) of the 

sample skewness and kurtosis, that the JB has rather poor small sample properties, the slow 

convergence of the test statistic to its limiting distribution, makes the test over-sized for small nominal 

level and under-sized for larger than 3% levels even in a reasonably large sample. Even the power of 

the tests shows the same erratic form. 

A reason for this is that skewness and kurtosis are not independently distributed, and the sample 

kurtosis especially approaches normality very slowly. That is, the slow convergence of the test statistic 

to its limiting distribution, which makes the test behave erratically over under-sized even in a 

reasonably large sample. 



However the JB test is simple to compute and its power has proved comparable to other powerful 

tests. 

Urzúa (1996), D’Agostino, Belanger and D’Agostino (1990) and Doornik and Hansen (1994) are a 

few studies, as we see in the next chapter, that try to correct that problem by employing a small sample 

correction. 

In recent years one of the new ways of dealing with, and solving this problem, has been to use the 

bootstrap technique.  

By bootstrapping under the null hypothesis we approximate the distribution of the test statistic, 

thereby generating more robust critical values for our test statistic. 

However, the issue of the bootstrap test, even if it is well applied, is not trivial. One of the basic 

problems in bootstrap testing is that one needs to resample the data, under the null hypothesis.  

In our study the null hypothesis is that the data follows normal distribution and based on that we 

present one simple and easy way to apply “sample” under the null hypothesis. 

 By sampling under the null hypothesis we approximate the distribution of the test statistic, thereby 

generating more robust critical values for our test statistic. 

The rest of the paper is organized as follows: Section 2 presents the skewness, kurtosis and Jarque and 

Bera test, while in section 3 we present our “sample” methodology. Section 4 presents the design of 

our Monte Carlo experiment. In Section 5 we describe the results concerning the size of the test, while 

power is analysed in Section 6. Finally, a brief summary and conclusions are presented in Section 7. 

 

2. SKEWNESS, KURTOSIS AND JARQUE-BERA TEST 
 

Let  ix
 
denote a sample of n observations, and let 

2, x   denote the mean and variance of  ix , and 

write  
j

j iE x   , so that 
2

2x  . The skewness 
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and kurtosis 
2  are defined as: 
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Then the sample skewness and kurtosis are defined as: 
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These quantities are consistent estimates of the theoretical skewness 
1  

and kurtosis 
2  

of the 

distribution. Moreover, if the sample indeed comes from a normal population, then their exact finite 

sample distribution can also be calculated. Pearson (1931), by using the 3
1 3 2
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m
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The 
1g  and 

2g  are both asymptotically normal. Based on that and that the normal distribution will 

have skewness = 0 and kurtosis =3, Bowman and Shenton (1975) consider the follow test statistic 

based on equation (1.1) which subsequently was derived as an LM test by Jarque and Bera (1987): 
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JB is asymptotically chi-squared distributed with two degrees of freedom because JB is just the sum of 

the squares of two asymptotically independent standardized normal variables.  

Based on Cramér (1946), and to remove the bias in g2 and to achieve consistency at the same time 

Mantalos (2010) found that by using the follow estimates: 
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we achieve better size with higher power. Note also that the quantities 
1k  and 

2k
 
are the definitions of 

sample skewness and kurtosis adopted by the computing packages SAS and SPSS, and also by the 

Excel spreadsheet programme (see Joanest and Gill, 1998). 

Further, by using the (
1k ,

2k ) we have the following JB statistic version: 
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However the rate of their convergence to the distribution limit is slow, especially for kurtosis. In order 

to solve this problem different solutions have been suggested. 

Urzúa (1996) introduced a modification of the Jarque-Bera test by standardizing the skewness and 

kurtosis in the equation of JB (2.7), that is, by using the mean and variance for the skewness, (2.3), 

(2.4) and for the kurtosis (2.5),(2.6), appropriately in the following way: 
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Another modification is the Omnibus K2 statistic made by D’Agostino, Belanger and D’Agostino 

(1990). A variation of this Omnibus K2 is used by Doornik and Hansen (1994), who employ a small 



sample correction, and adapt the test for the multivariate case. Note, that this test statistic is used and 

reported by computing packages  PcGive. 

They suggested a transformation to the sample skewness 
1g  and kurtosis 

2g
 
in a way that makes their 

distribution as close to standard normal as possible.   

In particular the Omnibus K
2
 statistic suggested the following transformation for the sample skewness, 

a transformation that was derived by D’Agostino (1970): 
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Where   and   are calculated as 

1 lnW  ,        (2.13) 

 2 22 1W   ,        (2.14) 

with    2

2 12 4 1W g         (2.15) 

Similarly for the sample kurtosis suggested the following transformation is made by Ancombe and 

Glynn (1983): 
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where 
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The statistics  1 1z g , (2.12) and  2 2z g , (2.16) produce the Omnibus K
2
 statistic:  
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If the null hypothesis of normality is true it is asymptotically chi-squared distributed with two degrees 

of freedom because JBK is just the sum of the squares of two asymptotically independent standardized 

normal variables.   

3. COMPUTER INTENSIVE CRITICAL VALUES 
 

In JB, JB(
1 2,k k ), JBM and JBK cases, however, the distributions of the test statistic we use are known 

only asymptotically and, unfortunately, unless the sample size is very large, the tests may not have the 

correct size. Inferential comparisons and judgements based on them might be misleading.  

As mentioned earlier, one of the new ways to deal with this situation, and solve this problem, has been 

to use the bootstrap test.  

By bootstrapping under the null hypothesis we approximate the distribution of the test statistic, 

thereby generating more robust critical values for our test statistic. 

However, here we present one simple and easy way to test for normality by using only the JB statistic. 

Furthermore, by using the “sample” technique we generate robust critical values for our test statistic, 

so by using the improved critical values the true size of the test approaches its nominal value. 

In our case it does not matter whether or not we know the nature of the theoretical distribution of the 

test statistic. What matters is that the technique well approximates these distributions. 

The basic principle of generating critical values is to draw a number of “samples” from the model 

under the null hypothesis. In our case with the restriction that skewness be equal to zero, and kurtosis 

be equal to three, we use the computer to generate from the standard normal distribution samples with 

the same number of observations (n) as our data. 

Then the procedure for calculating the critical values is given by the following steps: 

a) We estimate the JB(
1 2,k k ) test statistic as we have described in Section 2, (2.10). 

b) We generate a sample of n i.i.d N(0,1) observations.   

c) We then calculate the test statistic JB*(
1 2,k k ) as we have described in Section 2, (2.10) i.e., 

by calculating the sample skewness and kurtosis and then applying the Jarque and Bera test 

procedure by using the 1 2,k k to the n i.i.d N(0,1) observations.  



d) Repeating this step b times and taking the (1-):th quintile of the distribution of JB*, we 

obtain the  - level "sample critical values" (
*c ).   

e) We then reject Ho if JB *c .  

f) Finally an estimate of the P-value for testing is P*{
*

1 2,JB k k 1 2,JB k k }. 

The number of repetitions b that we use is 1000 but with today’s computer power can easily be larger 

without noticing any time delay  in the results. 

Note we use the (2.10) instead of (2.7) for two reasons, the first to compare our results with the results 

of Mantalos (2010) but also because in (2.10) definitions of sample skewness and kurtosis adopted by 

many computing packages such as SAS and SPSS, and Excel are used. Moreover, the results by using 

(2.7) are almost identical to (2.10). 

4. MONTE CARLO EXPERIMENTS  

 

In this section we provide the characteristics of the Monte Carlo experiment undertaken. We 

calculate the estimated size by simply observing how many times the correct null hypothesis is 

rejected in repeated samples. By varying factors such as the number of observations 25, 50 

(small sample) 75, 100 (medium sample) and 200, 500 (large sample); we obtain a succession of 

estimated percentages of the correct selection model under different conditions.     

The Monte Carlo experiment has been performed by generating data according to the following 

data generating processes:  

 

 Model 0:    is a sequence {
ix } of uncorrelated  0,1N  random variables. 

This model is used to estimate the size of the test while for the power we use the generalised 

lambda distribution suggested by Ramberg and Schmeiser (1974), that is an extension of 

Tukey's lambda distribution.  

The inverse distribution functions formula is  
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Here lambda 1 is a location parameter, lambda 2 is a scale parameter and lambda 3 and lambda 

4 jointly determine the shape of the distribution. In this way we are able to study the JB test 

under different shapes. Table 1  summarizes the different models with the different lambdas.  

The number of replications per model used is 10,000. The calculations were performed using 

GAUSS 8. 

Table 1: Different models for the estimated power of the JB test 

Model 
1  

2  
3  

4  

1: t-distrubution with df(14) 0.00000 0.05122 0.05122 0.078945 

2: skwe=0.00  kurt=3.5 0.00000 0.06222 0.06222 0.10180 

3: skwe=0.30  kurt=3.0 -0.36180 0.09255 0.18590 0.19910 

4: skwe=-0.30  kurt=3.0 0.36180 0.18590 0.092550 0.19910 

5: skwe=0.20  kurt=3.3 -0.16870 0.07651 0.10490 0.14160 

6: skwe=-0.20  kurt=3.3 0.16870 0.10490 0.07651 0.14160 

 

5.  ANALYSIS OF THE SIZE OF THE TESTS 

 

In this section we present the results of our Monte Carlo experiment concerning the size of the 

bootstrap tests. Simple graphical methods are used, methods developed and illustrated by Davidson 

and MacKinnon (1998) which are easy to interpret. The "P-value plot" is used to study the size, and 

the "Size-Power curves" to study the power of the tests. The graphs, the P-value plots and Size-Power 

curves are based on the empirical distribution function, EDF;  the EDF of the P-values, denoted as 

ˆ
jF x . For the P-value plots, if the distribution used to compute the 

sp  terms is correct, each of the 

sp  terms should be distributed uniformly on (0,1). Therefore the resulting graph should be close to the 

45o

 line. The P-value plots also make it possible and easy to distinguish between tests that 

systematically over-reject or under-reject, and tests that reject the null hypothesis about the right 

proportion of the time.  



Figure 1 shows the truncated (up to 20% nominal level) P-value plots for the actual size of the JB 

Tests, for the small sample. Unfortunately the asymptotic JB-Tests, (JBK = dash, JBM= point, 

JB(
1 2,k k )= point-dash ) show rather poor small sample properties, the tests over-sized for small up to 

5% nominal level and under-sized for the rest of the levels, for 25 observations even in the larger 

sample of 50. Note that the best of those three tests is the Omnibus K
2
 statistic made by D’Agostino, 

Belanger and D’Agostino (1990), JBK.  

From the other side the JBCV(
1 2,k k ) (line in figures), as we see, Figure 1, tends to reject as much as 

the nominal size, in both small samples 25 and 50 observations. That is, the P-values lie between the 

confidence interval close to the 45o
 line. That is, the JBCV(

1 2,k k ) which is the JB  test with the use 

of the quantities 
1k  and 

2k
 
as estimations of sample skewness and kurtosis and with the “sample” 

critical values behaves very well.  

In Figure 2, results are presented for the medium sample size. As noted previously, for the small 

samples the asymptotic JB-Tests over-sized for small up to 5% nominal level and under-sized for the 

rest of levels. Again the JBK is the best of the three tests and even now over-sized for small up to 5% 

nominal level but is lie on the line of the down limited of 95% confidence interval. 

The JBCV(
1 2,k k ) behaves again well, the P-values lie between the confidence interval close to the 

45o
 line. 

In large samples (Figure 3) we expected that all JB-Tests should behave well however both JBM, 

JB(
1 2,k k ) behave as before with small and medium samples, but now are near to the confidence 

interval. The JBK behaves well for more than 500 (Figure 3b) the P-values lie between the confidence 

interval close to the 45o
 line.  

Finally even here the JBCV(
1 2,k k ) has the right size the P-values lie between the confidence interval 

close to the 45o
 line. 

 



Figure 1 :Small sample P-value plots: Size of the Tests 

Figure 1a:  25 observations 

 

 
Figure 1b: 50 observations  

 

 

JBCV( 1 2,k k ) = line, JBK = dash, JBM= point, JB( 1 2,k k )= point-dash,95% confidence interval = close-point  

 

 



Figure 2 :Medium sample P-value plots: Size of the Tests 

Figure 2a:  75 observations 

 

 
Figure 2b: 100 observations  

 

 

JBK = dash, JBM= point, JBCV( 1 2,k k ) = line, JB( 1 2,k k )= point-dash,95% confidence interval = close-point  

 

 



Figure 3 :Large sample P-value plots: Size of the Tests 

Figure 3a:  200 observations 

 

 
Figure 3b: 500 observations  

 

 

JBK = dash, JBM= point, JBCV( 1 2,k k ) = line, JB( 1 2,k k )= point-dash,95% confidence interval = close-point  

 



To summarize our Monte Carlo experiment about the analysis of the size for the JB-Tests: we found 

that the rate of their convergence to the distribution limit is slow for the asymptotic JB-Tests, (JBK = 

dash, JBM= point, JB(
1 2,k k )= point-dash ). We find rather poor small sample properties, that is, the 

tests over-sized for small up to 5% nominal level and under-sized for the rest of the levels, even for 

200 observations. While the JBCV(
1 2,k k ), the JB test with “sample” critical values, is robust and has 

the right size, for all samples, that is, the P-values  lie between the confidence interval close to the 45o
 

line. 

6. ANALYSIS OF THE POWER OF THE TESTS 
 

In this section, we analyse the power of the the JB-tests using small, medium and large sample sizes of 

observations. The power function is estimated by calculating the rejection frequencies in 1,000 

replications using the different models of Table1.  

We used the Size-Power curves to compare the estimated power functions of the alternative test 

statistics. This proved to be quite adequate, because those tests that gave reasonable results regarding 

size usually differed very little regarding power. Note in what follows figures with a solid curve are 

the estimated power of the JB(
1 2,g g ) test as it was when we analysed the size of the tests. While 

those with a dash curve have the JB(
1 2,b b ). Finally those with a dot-dash curve have the, JB(

1 2,k k ) 

power. 

Figure 4 shows the results of the small sample (25 observations) using the Size-Power curves for all 

three JB-tests for the six different models. We see the JB(
1 2,k k ) test has higher power as we expected, 

because it was also the test with higher size from the size analysis section. Unfortunately JB shows 

rather poor small sample properties, and the same erratic form as with the size: the tests over- and 

under-rejection for the the 45o

 line.  

Even the JB(
1 2,k k ) does not escape that bias. However, we are able to observe that the positive 

kurtosis (Models 1 and 2) has a larger effect than both the skewness and kurtosis together. 

 

 



Figure 4: 25 Observations 

Model 1 

 

Model 2 

 

Model 3 

 

Model 4 

 
Model 5 

 

Model 6 

 

JBK = dash, JBM= point, JBCV(
1 2,k k ) = line, JB(

1 2,k k )= point-dash, the 45o
line = close-point  

 

 



Figure 5: 50 Observations 

Model 1 

 

Model 2 

 

Model 3 

 

Model 4 

 

Model 5 

 

Model 6 

 

JBK = dash, JBM= point, JBCV(
1 2,k k ) = line, JB(

1 2,k k )= point-dash, the 45o
line = close-point  



Figure 6: 75 Observations 

Model 1 

 

Model 2 

 
Model 3 

 

Model 4 

 
Model 5 

 

Model 6 

 

JBK = dash, JBM= point, JBCV( 1 2,k k ) = line, JB( 1 2,k k )= point-dash, the 45o
line = close-point  

 

 



Figure 7: 100 Observations 

Model 1 

 

Model 2 

 
Model 3 

 

Model 4 

 
Model 5 

 

Model 6 

 

JBK = dash, JBM= point, JBCV( 1 2,k k ) = line, JB( 1 2,k k )= point-dash, the 45o
line = close-point  

 

 



Figure 8: 200 Observations 

Model 1 

 

Model 2 

 
Model 3 

 

Model 4 

 
Model 5 

 

Model 6 

 

JBK = dash, JBM= point, JBCV( 1 2,k k ) = line, JB( 1 2,k k )= point-dash, the 45o
line = close-point  

 

 



Figure 9: 500 Observations 

Model 1 

 

Model 2 

 
Model 3 

 

Model 4 

 
Model 5 

 

Model 6 

 

JBK = dash, JBM= point, JBCV( 1 2,k k ) = line, JB( 1 2,k k )= point-dash, the 45o
line = close-point  

 

 



Figure 5 shows the results of the small sample of 50, the same results as before in Figure 4. Only after 

the sample of 75 observations (Figure 6) do the tests start to behave as they should. 

In Figures 7–9 we observe the sample effects on the behaviour of the different versions of the JB-tests, 

that is, by increasing the sample we get higher power. 

In small and medium samples the skewness effects more than the kurtosis the JB-tests, while in large 

samples the kurtosis effects more the power of the tests, see Figure 9 and Models 3 and 4. 

 

 

7. SUMMARY AND CONCLUSIONS 
 

The distributions of the test JB statistic and its modifications that we usually use are known only 

asymptotically and, unfortunately, unless the sample size is very large, the tests may not have the 

correct size. Inferential comparisons and judgements based on them might be misleading.  

Here we presented one simple and easy way to test for normality by only using the JB statistic, but 

instead of the asymptotical critical, we generating robust critical values for our test statistic, by using 

the “sample” technique. That is, by using the improved critical values the true size of the test 

approaches its nominal value. 

Monte Carlo methods and "P-value plot" are used to study the size, and the "Size-Power curves" to 

study the power of the JB normality test with the “sample” critical values and compare with three 

alternatives of the Jarque and Bera LM test for normality: the Urzúa (1996) modification of the 

Jarque-Bera test, JBM; the Omnibus K
2
 statistic made by D’Agostino, Belanger and D’Agostino 

(1990), JBK; and finally the Jarque and Bera LM test for normality by using the quantities 
1k  and 

2k
 

are the definitions of sample skewness and kurtosis JB(
1 2,k k ).  

About the size of the tests our analysis shows that our method of using the Jarque and Bera LM test for 

normality by using the “sample” critical values, JBCV(
1 2,k k ), is superior to the other modification of 

the JB test. The JBCV(
1 2,k k ), has the right size for all samples, small, medium and large. Moreover , 

in studied cases it has the higher power of the other comparing tests. 
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