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ABSTRACT 

Monte Carlo methods are used to study the size and the power of three versions of the Jarque 

and Bera LM test for normality, JB(
1 2,g g ), JB(

1 2,b b ), and finally JB(
1 2,k k ). The difference 

between these tests comes from the different definitions (estimates) of sample skewness and 

kurtosis. The Jarque and Bera test has rather poor small sample properties: the slow 

convergence of the test statistic to its limiting distribution makes the test over-sized for small 

nominal level and under-sized for larger than 3% levels even in a reasonably large sample. 

However the JB(
1 2,k k ) for a 5% nominal level shows good properties for all samples. The 

power of the tests shows the same erratic form. 
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1. Introduction 
 

One of the most widely used instruments in the first step of analysing a data set is the 

assumption of normality. The commonly assumed normality helps us to estimate and make 

inferential comparisons and judgments. 

However, violation of this assumption might produce misleading inferences and the result of 

using unreliable inferences is misleading interpretations. 

That is, testing for normality should be at least an important step. 

The most widely used method at least in econometrics, that has been suggested and used for 

testing whether the distribution underling a sample is normal is the Bowman and Shenton  

(Bowman and Shenton, 1975,  Shenton and Bowman, 1977) statistic:  

 
22 3

6 24

kurtosisskewness
JB n

 
  

  

   (1.1)  

which subsequently was derived by Bera and Jarque as the Lagrangian multiplier (LM) test 

against the Pearson family of distributions. For that reason, the JB test is also referred to as 

the Bera-Jarque test (Bera and Jarque, 1982; Jarque and Bera, 1987).  

 The statistic JB has an asymptotic chi-square distribution with two degrees of freedom.  

Simulation results comparing the power of the JB tests with other tests as the Shapiro-Wilk 

test (Shapiro and Wilk, 1965) or the Shapiro-Francia test (Shapiro and Francia, 1972) were 

reported by, among others, Pearson, D’Agostino and Bowman (1977),  Jarque and Bera 

(1987), Mardia (1980), and Deb and Sefton (1996). 

All these studies have showed that the JB test is simple to compute and its power has proved 

comparable to other powerful tests. 
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A very important ingredient for studying the JB test is that over the years, various measures of 

sample skewness and kurtosis have been proposed.  

Three measures of skewness and kurtosis are studied by Joanest and Gill (1998); defined as 

1g , 
1b and 

1k  for skewness and 
2g , 

2b and 
2k for kurtosis, and we will briefly describe them in 

the next chapter. Note also that the definitions of sample skewness and kurtosis that Joanest 

and Gill (1998) used, were the same as the definitions adopted by some computing packages, 

such as SAS, SPSS, MINITAB, BMDP, and also by the EXCEL spreadsheet program.  

In our study we investigate what are the effects of these definitions on the JB test for 

normality. 

The rest of the paper is organized as follows: Section 2 presents the three measures of 

skewness and kurtosis and the Jarque-Bera, JB test, while in Section 3 we present the design 

of our Monte Carlo experiment. In Section 4 we describe the results concerning the size of the 

test, while its power is analysed in Section 5. Finally, a brief summary and some conclusions 

are presented in Section 6. 

2. Skewness, kurtosis and the Jarque-Bera test.  
 

Let  ix denote a sample of n observations, and  let 2, x   denote the mean and variance of  ix , 

and write  
j

j iE x   , so that 2

2x  . In the same way the central moments jm are: 

 
1

1 n
j

j i

i

m x x
n 

 
   

 

Then the skewness 
1 and kurtosis 

2  are defined as:   

3
1 3 2

2



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2





 .     (2.1)  

While the sample skewness and kurtosis are defined as: 
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These quantities are consistent estimates of the theoretical skewness 
1 and kurtosis 

2 of the 

distribution. Moreover, if the sample indeed comes from a normal population, then their exact 

finite sample distribution can be calculated as well. 

By defining 3
1 3 2

2

m
g skew

m
   the skewness, and 4

2 2

2

3 3
m

g kurt
m

     the excess, Pearson 

(1931) showed that: 

1 1( ) 0g       (2.4)  
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1 2
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Based on  Cramér (1946), and to  remove the bias in g2 and achieve consistency at the same 

time, Joanest and Gill (1998)  used the following estimates: 

 
1 1

1

2

n n
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n





     (2.8)  
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The quantities 
1k  and 

2k are the definitions of sample skewness and kurtosis adopted by the 

computing packages SAS and SPSS, and also by the EXCEL spreadsheet program. In 

contrast, MINITAB and BMDP define skewness and kurtosis by (see Joanest and Gill 

(1998)). 

3 2

3 3
1 3 3 2

2

1m n m
b

s n m

 
   

 
     (2.10)  

and  

2

4 4
2 4 2
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 
     (2.11)   

where    
22

1
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ii
s x x

n 
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
   

Joanest and Gill (1998) found that for samples from a normal distribution, all three measures 

of skewness are unbiased, but in small samples the mean-squared error is less for MINITAB's 

1b , than for 
1g  and greater for SAS's 

1k than for
1g .  

The kurtosis measure 
2k also has the largest mean-squared error whereas 

2b has a mean-

squared error that is only slightly larger than that of 
2g .  

For large samples, there is very little difference between the three measures.  

Moreover, Joanest and Gill (1998) found that the variances of 
1k  and 

2k are the greatest, 

whereas
1b , and 

2b  have the smallest variances, whatever distribution is being sampled. 

Both 
1g  and 

2g  are asymptotically normal. Based on that and that the normal distribution will 

have skewness = 0 and kurtosis =3, Bowman and Shenton (1975) consider the follow test 

statistic, which subsequently was derived as an LM test by Jarque and Bera (1987): 
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and by using (
1b ,

2b ) and (
1k ,

2k ) we have the following JB statistic versions: 

   
2 2

1 2

1 2( , )
6 24

b b
JB b b n

 
  

  

,   (2.13) 

   
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1 2

1 2( , )
6 24

k k
JB k k n

 
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  

.                       (2.14) 

The JB-statistics are asymptotically chi-squared distributed with two degrees of freedom 

because JB is just the sum of squares of two asymptotically independent standardized 

normals.  

 

3. Monte Carlo Experiments. 
 

 

In this section we provide the characteristics of the Monte Carlo experiment undertaken. We 

calculate the estimated size by simply observing how many times the correct null hypothesis 

is rejected in repeated samples. By varying factors such as the number of observations 25, 50 

(small sample) 75, 100 (medium sample) and 200, 500 (large sample); we obtain a succession 

of estimated percentages of the correct selection model under different conditions.     

The Monte Carlo experiment has been performed by generating data according to the 

following data generating processes:  

 

 Model 0:    is a sequence {
ix } of uncorrelated  0,1N  random variables. 

This model is used to estimate the size of the test while for the power we use the generalised 

lambda distribution suggested by Ramberg and Schmeiser (1974), that is an extension of 

Tukey's lambda distribution.  

The inverse distribution functions formula is  
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Here lambda 1 is a location parameter, lambda 2 is a scale parameter and lambda 3 and lambda 4 

jointly determine the shape of the distribution. In this way we are able to study the JB test under 

different shapes. Table 1  summarizes the different models with the different lambdas.  

The number of replications per model used is 10,000. The calculations were performed using 

GAUSS 8. 

Table 1: Different models for the estimated power of the JB test 

Model 
1  

2  
3  

4  

1: t-distrubution with df(14) 0.00000 0.05122 0.05122 0.078945 

2: skwe=0.00  kurt=3.5 0.00000 0.06222 0.06222 0.10180 

3: skwe=0.30  kurt=3.0 -0.36180 0.09255 0.18590 0.19910 

4: skwe=-0.30  kurt=3.0 0.36180 0.18590 0.092550 0.19910 

5: skwe=0.20  kurt=3.3 -0.16870 0.07651 0.10490 0.14160 

6: skwe=-0.20  kurt=3.3 0.16870 0.10490 0.07651 0.14160 

 

4. Analysis of the Size of the Tests. 
 

In this section we present the results of our Monte Carlo experiment concerning the size of the 

bootstrap tests. Simple graphical methods are used, methods that were developed and 

illustrated by Davidson and MacKinnon (1998) and are easy to interpret. The P-value plot is 

used to study the size, and the Size-Power curves to study the power of the tests. The graphs, 

the P-value plots and size-power curves are based on the empirical distribution function, the 

EDF of the P-values, denoted as ˆ
jF x . For the P-value plots, if the distribution used to 

compute the 
sp  terms is correct, each of the 

sp  terms should be distributed uniformly on 
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(0,1). Therefore the resulting graph should be close to the 45o line. The P-value plots also 

make it possible and easy to distinguish between tests that systematically over-reject or under-

reject, and tests that reject the null hypothesis about the right proportion of the time. Figure 1 

shows the truncated (up to 20% nominal level) P-value plots for the actual size of the JB tests, 

for the small sample.  Unfortunately JB shows rather poor small sample properties, the tests 

are over-sized for small 1% and 2% nominal levels and under-sized for the rest of the levels 

for 25 observations even in the larger sample of 50. For both the bs and gs show the same 

behaviour as the JB tests: over-sized for small nominal levels and under-sized for levels larger 

than 3%, with less bias for the bs. The only positive is that for the ks estimates the JB test, 

even if over-sized for small nominal level and under-sized for the larger, has the surprising 

result that for the 5% level, the confidence interval is in fact almost an exact 5% for both 

samples! Figure 2 shows the same result for the medium samples, 75 and 100. Now the 

estimated JB tests are nearer to the confidence interval. But there are still the same effects: the 

JB tests areover-sized for small nominal levesl and under-sized for levels larger than 3% with 

less bias for the bs. Even here, for the the ks estimates the JB test has surprisingly good results 

for the 5% level. The estimated size of the test is inside the confidence interval.  

In large samples, more than 500, Figure 3b shows that the differences in definition are 

unimportant. However, in  small or moderate samples and even in a sample as large as 200 

observations, Figure 3a, the differences can be quite startling;  the tests are over-sized for 

small, up to 3%, nominal levels, and under-sized for the rest of the levels. 
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Figure 1: Small sample P-value plots: size of the tests 

Figure 1a:  25 observations 
 

 
Figure 1b: 50 observations  
 

 
JB(

1 2,b b ) =small dash, JB(
1 2,g g ) = line, JB(

1 2,k k )= point-dash and 95% confidence interval = point  
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Figure 2: Medium sample P-value plots: size of the tests 

Figure 2a: 75 observations 
 

 
 

Figure 2b: 100 observations. 
 

 
JB(

1 2,b b ) =small dash, JB(
1 2,g g ) = line, JB(

1 2,k k )= point-dash and 95% confidence interval = point  
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Figure 3: Large sample P-value plots: Size of the tests  

Figure 3a: 200 observations. 
 

 
Figure 3b: 500 observations. 
 

 
JB(

1 2,b b ) =small dash, JB(
1 2,g g ) = line, JB(

1 2,k k )= point-dash and 95% confidence interval = point  
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5. Analysis of the Power of the Tests. 
 

In this section, we analyse the power of the JB tests using small, medium, and large sample 

sizes of observations. The power function is estimated by calculating the rejection frequencies 

in 1000 replications using the different models of Table1.  

We used the size-power curves to compare the estimated power functions of the alternative 

test statistics. This proved to be quite adequate, because those tests that gave reasonable 

results regarding size usually differed very little regarding power. Note that, in what follows, 

figures with a solid curve are the estimated power of the JB(
1 2,g g )  test as it was when we 

analysed the size of the tests. While with dashed curves we have the JB(
1 2,b b ). Finally with 

dot-dash curve is th, JB(
1 2,k k ) power . Now, Figure 4 shows the results of the small sample 

(25 observations) using the size-power curves for all three JB tests for the six different 

models. We see that the JB(
1 2,k k ) test has higher power as we expected, because it was also 

the test with higher size from the size analysis section. Unfortunately JB shows rather poor 

small sample properties, and the same erratic form as with the size: the tests over- and under-

reject, when compared with the 45o line.  

Even JB(
1 2,k k ) does not escape that bias. However, we are able to observe that positive 

kurtosis (models 1 and 2) has a larger effect than the both skewness and kurtosis together. 

Figure 5 shows the results of the small sample of 50. The same results as before in Figure 4, 

only after the sample of 75 observations, and in Figure 6 the tests start to behave as they 

should. In Figures 7–9 we observer the sample effects on the behaviour of the different 

versions of the JB tests, that is, by increasing the sample we get higher power. In small and 

medium samples the skewness effect is more than the kurtosis on the JB tests, while in large 

samples the kurtosis is that which affects more the power of the tests, see Figure 9, models 3 

and 4. 
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Figure 4: 25 observations 

Model 1 

 

Model 2 

 
Model 3 

 

Model 4 

 
Model 5 

 

Model 6 

 
JB(

1 2,b b ) =small dash, JB(
1 2,g g ) = line, JB(

1 2,k k )= dot-dash and the 45o line = dots 
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Figure 5: 50 observations 

Model 1 

 

Model 2 

 
Model 3 

 

Model 4 

 
Model 5 

 

Model 6 

 
JB(

1 2,b b ) =small dash, JB(
1 2,g g ) = line, JB(

1 2,k k )= dot-dash and the 45o line = dots 

 
 
 
 



15 
 

Figure 6: 75 observations 

Model 1 

 

Model 2 

 
Model 3 

 

Model 4 

 
Model 5 

 

Model 6 

 
JB(

1 2,b b ) =small dash, JB(
1 2,g g ) = line, JB(

1 2,k k )= dot-dash and the 45o line = dots 
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Figure 7: 100 observations 

Model 1 

 

Model 2 

 
Model 3 

 

Model 4 

 
Model 5 

 
 

Model 6 

 

JB(
1 2,b b ) =small dash, JB(

1 2,g g ) = line, JB(
1 2,k k )= dot-dash and the 45o line = dots 
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Figure 8: 200 observations 

Model 1 

 

Model 2 

 
Model 3 

 

Model 4 

 
Model 5 

 

Model 6 

 
JB(

1 2,b b ) =small dash, JB(
1 2,g g ) = line, JB(

1 2,k k )= dot-dash and the 45o line = dots 
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Figure 9: 500 observations 

Model 1 

 

Model 2 

 
Model 3 

 

Model 4 

 
Model 5 

 

Model 6 

 
JB(

1 2,b b ) =small dash, JB(
1 2,g g ) = line, JB(

1 2,k k )= dot-dash and the 45o line = dots 
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6. Summary and Conclusions. 
 

Monte Carlo methods and the P-value plot were used to study the size, and the size-power 

curves, to study the power of three alternative versions of the Jarque and Bera LM test for 

normality, JB(
1 2,g g ) and JB(

1 2,b b ), and finally JB(
1 2,k k ). The difference between these tests 

comes  from the different definitions (estimates) of sample skewness and kurtosis. 

About the size of the tests our analysis shows that in large samples, more than 500, the 

differences in definition are unimportant. However, in  small or moderate samples and even in 

a sample as large as 200, Figure 3a, the differences can be quite startling:  the tests are over-

sized for small, up to 3% nominal level, and under-sized for the rest of the levels. 

Unfortunately JB has rather poor small sample properties: the slow convergence of the test 

statistic to its limiting distribution makes the test under-sized even in a reasonably large 

sample.  

In spite of all the negative results of these three definitions of sample skewness and kurtosis, 

the quantities 
1k  and 

2k as described in (2.8) and (2.9) yields a JB-statistic with surprisingly 

good results for the 5% nominal level: the estimated size of the test is inside the confidence 

interval, that is, near to its nominal. 

The JB-statistic with the quantities 
1k  and 

2k has also the higher power. In small and medium 

samples the JB shows rather poor small sample properties, and the same erratic form as with 

the size appears: the tests over- and under-rejection for the 45o line.  

Finally in small and medium samples the skewness affects the JB tests more than does the 

kurtosis, while in large samples the kurtosis is that which affects more the power of the tests. 
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